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A recently proposed model of the liquid-vapour phase transition has a configura- 
tional energy specified by the volume W covered by N freely penetrating spheres, each 
of volume v,, , when placed in a volume V. In this paper Monte Carlo computations are 
used to calculate the probability distribution of the ratio ( W/v) when the spheres are 
placed at random. Distributions are reported for values of the density (Nw,/V) from 
1.0-5.0 in three-dimensional systems, and from 0.5-2.0 in two-dimensional systems, 
i.e., for disks placed on a plane. In all cases the distributions are close to normal, but 
there is a small asymmetry which leads to negative values of the third moment. 

Widom and Rowlinson [l] recently described a new model for the study of 
vapour-liquid phase transitions. In this model, the potential energy U(r, *** r,) is 
associated with a configuration of a system of N molecules confined to a volume V. 
About the center of each molecule, a sphere of radius (T (volume vO) is drawn. 
The resulting configuration of N, in general, interpenetrating spheres covers a 
volume W(r, *.* rN) and, because of the interpenetration, W .< NV, . U is now 
defined by 

U(r, a+* rN> = W(rl **a rN) - Nvo] c/v0 (WR 3.1)l, (1) 

where E > 0 is an arbitrary energy parameter. 
A set of dimensionless variables, p the density, 0 the reciprocal temperature, r 

the pressure to temperature ratio, and 4 the potential energy density are defined 
by [(WR 2.1)]: 

P = W,lK 

0 = c/kT, 
r = Pv,lkT, 

(2) 

+ = VoIOB/EV, 

1 Equation (3.1) etc. of Ref. [l] is here denoted (WR 3.1) etc. 
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where k is Boltzmann’s constant, T is the temperature, and P is the pressure of 
the system and 0 = U(r, ... rN) is the canonical average of U(r, .** I~). In these 
variables (1) becomes 

++p = TTyv. (3) 

In general, there is no analytical method for finding each W(r, ... rN) from a 
knowledge of r, ... rN , or for finding the statistics of its distribution. 

RANDOM DISTRIBUTION APPROXIMATION 

If the molecules occupy positions at random (the limiting case expected at very 
high temperatures 19 N 0) the mean value (W) is easily found. (Brackets ( ) 
indicate an average over the random configuration.) In the thermodynamic limit 
N + co, V ---f 00, N/V constant: 

(W)/V = 1 - e-O. (4) 

Through thermodynamic fluctuation theory 4 can be expanded as a power series 
in 0 giving 

where K, is the nth cumulant of the random distribution of W(r, *a* rN). The 
first cumulant Kl = (W) is the mean of the distribution and is given by (4). 
Widom and Rowlinson showed that K, = ( Wz) -( W)” is given by [(WR 7.19)] 

where b,(x) is a dimensionless second cluster integral defined for dimensionality s 
by WR 6.311 

u,b,(x) = ; a, jr rs-l [exp ( -x[W(r) - 2uo] u. ) - l] dr, 

where u is the radius of the sphere of volume u. , a, is the volume of an 
s-dimensional sphere of unit radius and W(r) is the volume covered by two inter- 
penetrating spheres each of volume zlo when their centers are separated by distance r 
WR 6.411 

(8) 
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By expansion, in three dimensions 

In two dimensions 

b2(-9 = -2 + (ez + 1) .=g3.. npn-l [i$,, (P” + i2)lp1 

t (e” - 1) n=$4,3 nP2 riIQ4 6 (P” + i2)]-1, 9 1 
where p = X/T. Hence, Eq. (5) becomes [(WR 7.17)] 

(9) 

4 = 1 - e-O - p - 8[2b,(p) - p] e-2p + 0(02) (11) 

with b,(p) defined by (9). In order to determine the higher cumulants KS, K4 , etc. 
required to extend (11) to higher powers of 8, a Monte Carlo computation was 
made to evaluate the volumes W(r, a+* rN) of a large number of configurations of 
N randomly placed spheres in a volume V and of randomly placed circular disks 
on a plane. 

Higher order cumulants can be expressed in terms of higher order cluster 
integrals by a procedure similar to that used by Widom and Rowlinson for K, . 
Thus 

K3W02 = b - 3~” - %4b2’b) - 2b2(p)l - %b)I e-3p, (12) 

where the prime denotes differentiation. (This expression has been obtained 
independently by T. J. Lie and B. Widom.) These higher cluster integrals can 
themselves be obtained only by numerical integration. 

OTHER APPLICATIONS 

The problem of overlapping figures has been of independent statistical interest 
and is described in recent reviews by Moran [2]. 

The one-dimensional problem is encountered in the calculation of the dead-time 
correction to the counting rates of radioactive particles and presents few problems. 
The two-dimensional version arises in such problems as the coverage of a plane 
by impinging particles of aerosols, and was studied during the second world war 
by those interested in predicting bombing patterns. Garwood [3] made some 
experiments on the areas covered by overlapping disks on a plane. He found a 
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mean close to that given by Eq. (4) and obtained an empirical expression for the 
standard deviation: 

(13) 

COMPUTATION 

A system of N molecules (usually 200) is confined within a unit cube. The 
coordinates defining the position of each molecule are assigned by a random 
number generator giving rectangularly distributed random numbers between 0.0 
and 1.0. In order to simulate as closely as possible the behavior of a large system, 
a periodic boundary condition is used, the basic cell being surrounded by replicas 
of itself. The value of u,, (and hence of u) is determined from Eq. (2) from the 
assigned values for p and N. 

A Monte Carlo calculation may be performed by placing random test points 
inside the volume I’ and enquiring whether or not each test point lies inside the 
volume W. A count is kept of the total number of test points and of the number 
inside W. In the limit of a large number of test points the ratio of the number of 
test points inside W to the total number approaches (W/V). 

Since the spheres are placed randomly in the volume V it is unnecessary here to 
use a random set of test points. Similar convergence to the proper distribution is 
expected from a fixed set of test points and a randomly moving W, and so a regular 
grid of 25 x 25 x 25 test points uniformly filling the volume Vis used (100 x 100 
in two dimensions). 

Instead of calculating the volume of a completely new configuration of N mole- 
cules each time, only one molecule is moved to a new random position in order to 
generate the next configuration. The operation is then repeated with each molecule 
in turn. It is found from sampling the set of volumes so obtained that the values 
cross from one side of the mean to the other on average every 25 configurations. 
If the configurations were totally independent a crossing would be expected on 
average every 2 configurations. This procedure thus slows the convergence by a 
factor of not more than 25, with a saving in machine time of a factor of 200, 
giving a net saving of a factor of 8-10 in machine time. 

The apparent volume of each sphere, as assessed by the number of test points 
it covers, could vary by flO-15 % of u,, . As well as (W/V), the value of the 
volume of each sphere is calculated and hence a value of Nu, is obtained inde- 
pendently of any overlap. The value of W/V is corrected for any over- or under- 
estimation by assuming that the correction factor is proportionally the same as 
that required to bring the calculated value of NV, to its correct value of pV. 
This correction is always less than 0.3 % and typically less than 0.1 %. 
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FIG. 1. Histograms and normal curves for the probability density in three dimensions at 
densities of p = 1.0 and 1.5. 

p.a.0 

FIG, 2. Histograms and normal curves for the probability density in three dimensions at 
densities of p = 2.0 and 3.0. 
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FIG. 3. Histograms and normal curves for the probability density in two dimensions at 
densities of p = 0.5 and 1.0. 

FIG. 4. Histograms and normal curves for the probability density in two dimensions at 
densities of 1.5 and 2.0. 
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At low densities a number of configurations have volume W exactly equal to 
NV, (i.e., there is no overlap), their frequency forming a a-function in the histogram 
at this value, but as p (as hence NV,) increases this a-function rapidly becomes 
negligible and disappears. At high densities a similar &function is expected at 
W/V = 1 when the spheres completely fill the volume V. In an infinite thermo- 
dynamic system these a-functions are absent. 

RESULTS 

In three dimensions two sets of 50 000 configurations were generated at densities 
of 1.0 and 2.0, one set of 50 000 configurations at a density of 1.5 and one set of 
10 000 configurations at densities of 3.0, 4.0, and 5.0. These densities are too high 
for the &functions at W = NV,, to appear in the histogram. The a-function at 
W/V = 1 just appears at p = 5.0, with 9 of the 10 000 configurations having this 
value of W/V. 

The histograms are normalized to cover unit area and are shown in Fig. 1 and 2 
as probability densities. 

TABLE I 

Three Dimensional Results 

P 1.0 
Number of Configurations 5OW 

1.5 
50000 

2.0 

50 ow 

3.0 

10000 

(W/V [Eq. (4)l 0.6321 0.7769 0.8647 0.9502 
<w>/J'IW. (1411 0.6330 0.7781 0.8660 0.9513 
KS = ~2 ( x 107 [Eq. (6)l 0.1286 0.1743 0.1670 0.0938 

<w/v 0.6334 
0.6330 

K2 = pL?(x103) 0.110 
0.139 

KS = p,(xlOG) -0.07 
-0.21 

P*r ( x 10’) 0.35 
0.56 

K4 = /Lo - 3/~,~ ( x 10’) -0.01 
-0.02 

Ps (x 109 -0.08 
-0.22 

Pe(xlo’“) 0.18 
0.35 

0.7788 0.9513 

0.164 0.0811 0.0389 0.0109 

+0.03 -0.22 

0.79 0.21 

-0.02 +0.01 

0.00 

0.61 

0.8669 
0.8667 
0.146 
0.173 

-0.14 
-0.37 

0.67 
0.86 

+0.03 
-0.04 
-0.27 
-0.57 

0.56 
0.70 

-0.17 

0.09 

4.0 5.0 

10000 10000 

0.9817 0.9933 
0.9824 0.9937 
0.0381 0.0132 

0.9824 0.9941 

-0.13 ~ 0.04 

0.05 0.05 

0.00 +0.05 

-0.04 0.00 

0.01 0.00 

a Two sets of 50 000. 
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TABLE 11 

Two Dimensional Results 

P 0.5 1.0 1.5 2.0 
Number of Configurations 50 000 50 000 50 oooa 50 oooa 

<Wif'[Eq. (411 0.3935 0.6321 0.7769 0.8647 
<W:vW1.(14)1 0.3938 0.6330 0.778 I 0.8660 
K2 = p2(x103) [Eq.(6)] 0.0584 0.191 I 0.2660 0.2622 
K = PA x 109 [Eq. (t3)l 0.0686 0.1891 0.2589 0.2691 

(W>iV 0.3945 0.6317 0.7788 0.8655 
0.7781 0.8663 

K, = pz(x103) 0.0657 0.204 0.271 0.283 
0.247 0.244 

K, = pn(xlOG) -0.05 -0.41 -0.52 -1.15 
-0.40 -0.46 

pLc (x 1oy 0.01 0.13 0.21 0.25 
0.19 0.18 

K, = pa - 3pLaZ(x 10G) 0.00 +o.oo, -0.00, +o.oo, 
$0.00, $0.00, 

p5 (x 109) -0.02 -0.76 -1.45 -3.42 
-0.93 -1.12 

t% ( x 107 0.004 0.14 0.28 0.40 
0.23 0.21 

a Two sets of 50 000. 

In two dimensions, two sets of 50 000 configurations were generated at densities 
of 1.5 and 2.0 and one set of 50 000 configurations at densities of 0.5 and 1.0. 
These histograms are shown in Figs. 3 and 4. Tables I and II show the resulting 
means and moments of the distributions. 

Equation (4) gives the correct mean (IV) only for an infinite thermodynamic 
system. That for a finite system of N molecules is 

(W) = 1 - (1 - $ (14) 

The variance is also expected to differ slightly from that given by Eq. (6) but the 
exact effect of the finite system with periodic boundaries on the variance is not 
known. 

For each histogram a normal curve with the experimental mean and variance is 
shown in each of Figs. 1-4. In all cases the distribution is apparently represented 
by this normal curve. The experimental mean is very close to that given by Eq. (14) 
and hence the mean of the thermodynamic system is given by Eq. (4). The experi- 
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mental variances are not as precise as the means but do not differ greatly from 
those predicted by Eq. (6). For a normal distribution, all cumulants K,, , with 
n 3 3 are identically zero. The experimental higher cumulants (K, for n > 3) are 
all one or two orders of magnitude less than the corresponding moments (except 
perhaps for p = 5.0). Thus Eq. 5 becomes simply 

cj = 1 - e-O - p - 0[2b,(p) - p] e-2o. (15) 

Equation (15) is to be compared with the complete expansions of Eqs. (11) 
and (5). The expression to first order in 0 is thus a much better approximation than 
(11) was initially thought to be. The higher order terms correct for the slight 
deviations of the random distribution of W/V from the normal distribution, and 
in all but one of the runs the third cumulant KS = p3 is negative. These numbers 
are evidence of a small but probably real asymmetry in the distributions which is 
stronger in two dimensions than three. K4 = pFLa - 3~~~ is always less than the 
experimental error. 

Since higher order cumulants are almost zero, approximate expressions for the 
higher cluster integrals can be obtained from equations such as (12). Thus we 
expect that in three dimensions 

3&(x) N x - #x2 - 3x[b,‘(x) - 2b,(x)]. (16) 
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